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A_straet

Vibrations in modem structural and mechanical

systems can be reduced in amplitude by increasing
stiffness, redistributing stiffness and mass, and/or adding
damping if design techniques are available to do so. Linear
Quadratic Regulator (or LQR) theory in modern
multivariable control design, attacks the general dissipative
elastic system design problem in a global formulation.
The optimal design, however, allows electronic
connections and phase relations which are not physically
practical or possible in passive structural-mechanical
devices. This paper addresses the restriction of LQR
solutions (to the Algebraic Riccati Equation) to design
spaces which can be implemented as passive structural
members and/or dampers. A general closed-form solution
to the optimal free-decay control problem is presented
which is tailored for structural-mechanical systems. The
solution includes, as subsets, special cases such as the
Rayleigh Dissipation Function and total energy.
Weighting matrix selection is a constrained choice among
several parameters to obtain desired physical relationships.
The closed-form solution is also applicable to active
control design for systems where perfect, collocated
actuator-sensor pairs exist. Some examples of simple
spring mass systems are shown to illustrate key points.

I. Introduction

Many modem structural and mechanical systems
are subject to dynamic input forces which excite flexible
vibrations. These vibations can be reduced in amplitude
by increasing stiffness. However, reducing mass or inertia
at the risk of reducing stiffness is an important factor for
other reasons, such as launch costs or rigid-body control

* Head, Spacecraft Dynamics Branch
Associate Fellow, AIAA

** Professor, Aeronautics and Astronautics Engineering,
Fellow, AIAA

energy. A third design parameter, damping, offers an
alternative for the stiffness-versus-mass dilemma, if
suitable design methods can be developed for dissipative
structures. Also, redistribution of stiffness and mass
without increasing total mass can be beneficial if design
techniques are available to do so.

Linear Quadratic Regulator (or LQR) theory in
modern multivariable control design, attacks the general
dissipative system design problem in a global formulation
based first-order equations. This formulation usually
yields a requirement for computer solution of a nonlinear
matrix equation (the Algebraic Riccati Equation). For the
case of structural and mechanical systems where second-
order governing equations predominate, the control
equations are twice the usual matrix dimension, dependent
on arbiuarily selected weighting matrices, and are difficult
to interpret in terms of physical design parameters. In
control design, a computer can implement connections and
phase relations which are not physically practical or
possible in the structural-mechanical case (e.g., Hanks and
Skelton 1, and Hvorat2). Nevertheless, the theory is
applicable to passive structural systems and the challenge
in using it is to restrict it to physically possible design
spaces. Previous studies, such as Skelton, et. al. 3,4,5,
have considered physically constrained computer solutions.
Others, such as Kojitani and Ikeda 6 and Belvin and Park 7
have provided closed-form solutions for special cases.

This paper presents a general closed-form solution
to the optimal free-decay control problem which is
constrained to predetermined structural-mechanical
geometry. It is derived entirely in physical coordinates
using mass, stiffness, and viscous damping matrices. The
solution results in a final (closed-loop) objective function
which is a generalized energy expression for dissipative
structural-mechanical systems. Application is discussed to
special cases including the Rayleigh Dissipation Function,
total energy, and known closed-form solutions for
particular objective functions. Weighting matrix selection
is a choice among several parameter matrices. For design
objectives commonly used in LQR control system design
(i.e., choices of Q weighting matrices), direct solution for
optimal design parameters (R weighting matrices) is
possible, but frequently structurally impractical. The
closed-form solution and its physical interpretation is also
applicable to the active control problem for similar
systems where perfect, collocated actuator-sensor pairs
exist and, hence, is applicable for initial control design and



IL Connectivity Modeling Of Discrfte
Physical Systems

Any discrete physical system, or discrete
representation of a continuous physical system, may be
modeled in connectivity form, that is, as a three-matrix
product BGH where each column of B and each row of H
carries connection geometry information and Gisa
diagonal "gain" matrix. G has dimension mxm where m

is the number of connections between nodes, _ has
dimensionnxm where n is the numberof input (forced)
nodes andH hasdimensionmxk wherek is the numberof
output (sensed)node.s. In passivestructural/mechanical
systems,or active and mixed active-passivesystemswith
perfect collocatedsensors and actuators,H=B*, where *
denotes the complex conjugate tran_ of B • Thus, the
usual nxn symmetric mass, stiffness, and damping

parameter matrices, M, D, and K become

M = B GB', D = B,G,Bj, and K = BtGtB_ (1)
where

Gj = diag[-., g,.--]j (2)

are mxm diagonal matrices. The number of terms, gi, on
the diagonal of G in each parameter is large, i.e., on the
order of n+(p/2), where p is the number of non-zero off-
diagonal terms in each matrix. It is convenient to keep B
the same for all three matrices and enter gi=0 for non-
existent connections, provided there is no requirement for

Fig. 1 Simple Floating Three-Mass Elastic System

the inverse of G to exist. The dimension of G is usually
determined by the number of stiffness connections in K.

The columns, bi, of B contain one or two non-zero entries
of direction cosines to ground or between nodes. The
diagonal terms of each G matrix contains local parameter
magnitudes between nodes such as lumped mass, spring or
damper coefficients in spring-mass systems or, similarly,
truss elongation stiffness in trusses. For illustration,
consider the simple system of Fig. I. For this system,
the parameter matrices are as follows:

B =B =B, = 1 0 -1 ,

0 1 o

GM'-

"ml 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 0

0 0 0 0

-0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

oook, o
ooo o G

.

0

0

0

0

and G_, has the same form as G_. If compactness is

important, or if inverses of G are necessary, these matrices
may be simplified by eliminating the zero-gain columns
and rows and the corresponding columns of B, but the
form here is useful for explanation of relative positions of
ten-as. Furthermore, if _ springs and dampers are active
devices, or are in parallel with active devices, the net gain
terms can be negative or zero.

In this paper, we will consider two types of

gains, the initial system gains (i. e. M, 9(, and D). and

"passive control" gains ( changes in mass, AM,stiffness,

AK, or damping, AD). A control gain may involve
changing an existing gain value or introducing a new
connection which was not present in the initial design.
The term closed-loop gains, denoted by a hatted symbol,
will refer to the final mass, stiffness, and damping

^ ^ ^

(i.e.,M = M + AM, K = K + AK, and D = D + AD ),
after either passive or active changes are made. Active
controls using acceleration, position, and rate feedback
effectively produce changes in mass, stiffness, and
damping, respectively (assuming negligible actuator and
sensor dynamics).
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Fig. 2 Three-Mass Floating Elastic System with Possible
Collocated Control Connections
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In designing a set of springs (passive position-
feedback) and dampers (passive rate-feedback), a set of
active position, rate and acceleration feedback controls, or a
combination of all, a large numbei" of connections are
possible. For the example of Fig. 1, the four possible
additional connection paths for collocated pairs are shown
schematically in Fig. 2. There are 24 possible connection
combinations for the system of Fig. 2, two of which are
shown with their corresponding B matrices in Fig. 3.
Confguration 1 includes all possible (collocated)
connections and represents the type of solution which may
be obtained from standard, unconstrained LQR controls
designs. In such designs, interconnection capability is
assumed available at all nodes but, especially in the case of
passive implementation, is rarely practical.

['1 0 0 1 0 -1]

B=10 i 0 -1 -1 01
L00,0,

Configuration 1

0[.E
|

1-11 0q
B=I0 -1 -11

L00 ,1
Configuration 2

Fig.3 Some Alternative Connection Geometries for a
3-Mass Simple System

Hanks and Skelton 1, using a finite-element,
cantilever beam example, showed that the addition of
connections from analysis nodes to ground and between
non-adjacent analysis nodes are required by an LQR design
solution. Such connection freedom may not be cost-

effective, even if it is possible. Hvorat 2, studying
minimization of squared displacements on a two-mass,
simple system, concluded from mathematical criteria that
an LQR controller could not be implemented by a single,
passive, non-grounded controller. The option to constrain
the solution to allow only physically practical connection
locations, such as in Configurations 1 and 2 in Fig. 3, is
necessary in practical passive or active control design.
Skelton, et. al. 3,4, using the above diagonal-gain
connectivity approach to fix control configuration
geometry, applied an iterative constrained output feedback
solution to minimize a quadratic objective function while
satisfying predetermined limits on parameter changes. The
following sections discuss a closed-form solution to the
LQR problem which provides the optimal solution while
maintaining predefined passive, or collocated active,
control geometry. It is not restricted to the diagonal gain

formulation, but certain parameters such as weighting
matrix values, can be physically interpreted using the
connectivity concept.

III. Theory Preliminaries

Linear Quadratic Regulator (LQR) control theory
has potential for structural dynamics design in mechanics.
This theory is widely available in textbooks, such as
Skelton 5, but an outline is presented here for purposes of
reference and terminology in deriving later results. Free-
decay and full-state feed-back motion will be disettssed,

The time-invariant LQR approach minimizes an
objective function, V, which is the infinite-time integral
of the sum of weighted quadratic potential function of the
state vector, z, and the control vector, u. It is well known
that the minimization of

V = 1 j. (z * Qz + u * Ru)dt
2 (3)

subject to the constraints of the system equations of motio

z = Az + Bu (4)

yields

u,_ =-R-tB* Kz (5)
where K is a symmetric, positive-defnite gain matrix
which satisfies

KA+A*K- KBRtBK+Q = 0 (6)

Substituting the linear optimal feedback control (5) into
(4), the closed-loop system equations of motion become

• ^

z = Az - BR"BKz = (A + AA)z = Az (7)

Similarly, (3) yields the optimal objective function

V = 2J0- (z * Qz + z * KBR-'BKz)dt

1
= -- I_"z * (Q + AQ)z dt

2

1 ^ 1
= - ]'."(z * Qz)dt =-z * (0)Kz(0),

2" 2

I_ = Q + KBR-_B * K (8)

where z(0) is the initial state vector.

If (A,B) is stabilizable (that is, the uncontrollable
modes are stable) and (A,Q) is detectable (that is, the
unobservable modes are stable), then the feedback gain
matrix, K, that solves (6) is positive semi-definite and

_k= A + AA is also stable, Equation (6) can also be
written

3



KA+A*K+ =0 (9)

From Liapunov stability thex)ry, equation (9) represents a
^

stable system if K is positive definite and Q is positive

semi-definite, that is, K >0, (_ _>0.

Now, consider the familiar equation

Mq+ (D + G)q+ _ = _a (I0)

where M,K,D, and G are mass, stiffness,damping and

gyroscopic-couplingmatrices,respectively,having the

followingproperties:

M=M*>O, K=K*>O,

D = D* > O, and G = -G * (ll)

By writing the state z, in (4) as

z={ t
(12)

where q is displacement and q is velocity, the equations of

motion (10) become, in the first-order form of (4),

Az = = (A+ AA)z = Az

=[o , ,,
-M-'K -M-'(D+ G) M-'B (13)

The optimal control (5) is

:u,_ -R-'[0 B*
K_, K.>JtqJ

= lit -!-R-iB M (K2,q+K=q) (14)

and the objective function (3) has the form

,{ .ro,,o..lI:)+,.,+,V=25_" (q q)*LQ,, Q=-][qJ (15)

Substituting the optimal control (14) into (10) gives the

equations of motion of the closed- loop, or revised system

M q+(D +G + BR 'B* M-'K:) 4

i -I

+(K+BR'B M K2,)q=0 (16)

A

Similarly, the closed-loop integrand z * Qz of the optimal

objective function (15) becomes

z*Qz = z*Qz+ u* Ru = z* (Q +KBR'BK)z

A

where the 2n x 2n matrix Qreduces to

(17)

a=r<,,,
LQ. Q=-J LK,, M_'- R-'(BM-'K,, BM-'K,,)

(18)

Now, for simplification of notation, we define

r = BR-'B * (19)

The 2n x 2n Riccati equation, (6), from which the control

gains are derived, can be written in second-order form as
four n x n matrix equations of which three are

independent 5. These three, including the notation (19), are
as follows:

-Ki2 M-1K - _(F'(-1K21 - KI2M-1I'M-IK21 + Qil = 0(20)

.i , -t
-K22M (9 + q) - (9 + q) M K22

+Kl2 + K2i - Ki2M"r'M"K22 + Q22 = 0 (21)

KII - KiiM't(D + G) - 9_'¢"K22 - KizM"FM"K22 + Ql2 = 0

(22)

IV. Closed-Form Solutions Of Algebraic

R|ccati Eauations

Equation (i6) provides the basic relationships

between the physical system parameters and the
mathematical design parameter matrices. These are as
follows:

AK = FM"K21, A(D+ G) = FM"K22 (23)

Hence, solution of (20) through (22) to obtain K12 and

K22 provides the optimal system stiffness and damping

changes for any permissible set of Q and R matrices.
Usually, these equations are solved numerically by
computer. However, closed-form solutions are known for
some special cases as discussed in the following section.

The Solution of Koiitani and Ikeda

Kojitani and Ikeda 6, propose the following
weighting matrix:

2K + al" q
b

q --(2D +Q = a[ , br) - 2M
L a (24)

Where a and b are arbitrary scalars which must be restricted
for existence of the Riccati equation solution. This results
in an exact solution to the Riccati equation of the form

4



K+aF+--_

g=b b l
a

--M
b

where the submatrices

b>0

(25)

K12 = K21 = aM, Kz2 = bM (26)

lead to the very simple control vector

q (:)u=-R"B*(aq+b )=-R_B*lal _bl]

(27)
Proof that (25) is a solution is a simple matter of
substituting the terms into (20) through (22).

Assuming that F is preassigned, the above
solution to (20) through (22) has two arbitrary parameters
a and b, resulting in one added constraint, K21 =(a/b) K22.

This constraint requires that the stiffness change be
proportional to the damping change. Replacing this
constraint by the condition a =0 is also possible. ( b=0 is
not permissible if K is to be positive definite.) It also
provides a direct implementation of control feedback loops
in which measurements are preweighted by a scalar

constant rather that the matrices M" and/or Kij. This

allows observation of a very important point. The closed-
loop system equations of motion are

.o

M q+ (D + G + br)q+ (K + aF)q

.°

-Mq+(D+G+AD)q+(K+AK)q -0 (28)

From (28), it is clear that the closed-loop stiffness and

damping matrix changes arc entirely a function of free
parameters (a, b, 1".). The optimal control design has
been obtained and its form is predetermined by the scalar
constants a and b and the matrix r" (composed of the

assumed B and R). Even with the luxury of full-state
feedback, we have no indication of how to choose the key

parameters which define the optimal controller design (i.e.,
stiffness and damping). In fact, the following proposition
can be stated by inspection of (26) through (28):

Proposition: Any solution of the full-state feedback
control problem which results in Riccati solutions of the

form (26) transforms the problem into the symmetric form

of the standard measurement feedback problem, with R"1

being the equivalent of the optimal gain sought.

Problem: Applying the diagonal gain formulation of

Section I, R-1 becomes a diagonal gain matrix whose

diagonal elements r_ 1 are the gains of single physical

connections. For any set of mechanical/structural

connections, find an optimal R matrix which provides the
gains for the optimal control problem.

Determination of this R matrix, will be explored in

Section V.

The Solution of Belvin and Park.

In the above solution, Q contains terms of the

optimal control which is being sought. A solution which
does not have this characteristic was offered by Belvin and

Park 7 for the special case where B is square and of full
rank. Their closed-form solution to (20) through (22)

assumes Q and R as follows:

[7 0]Q= _M ' R=B*K" (29)

The solution is presented in tic following form:

.rim _rK-'_ (30)

Where ct and 13are arbitrary scalar constants and

r/='_+_-l, ¢= 2_/3,

and W = M a M _A'I ' M 2 = M D,,*M"

(31)

(D= denotes the critical damping matrix8.) This solution

yields a control law

Bu = -r/_t - 6"_Pq (32)

which minimizes the sum of the strain and kinetic energies

of the open-loop system. It is interesting to note that for
a single-degree-of-freedom system the velocity feedback

gain is _-m, that is, proportional to critical damping.

A General Energy-Related Solution.

Equations (20) to (22), the Riccati sub-equations,
provide three relationships among the design parameter
matrices. There are seven undefined parameter matrices in

these equations, 3Qij's, 3 Kij's and I'. Picking any four
defines a unique relationship among the remaining
matrices. It is commonly assumed, as in the Kojitani-

Ikeda and Belvin-Park solutions, that F and Qij are

preassigned and the equations solved for K. ( F is actually

composed of two matrices, B and R, but they never appear
independently in the above equations and may be
considered as a unit in the solution, with the condition that

R "1 must exist.) This is not required, however. Choosing

physically meaningful and mathematically permissible
forms for other combinations of four terms is possible. A

great many logical combinations of parameters exist, some
of which may take the form of constraint equations.

The physically simple control vector form (27) of
the Kojitani-Ikeda solution suggests a meaningful choice

5



for two of the parameters, K12 and K22. Therefore,

substituting (27) into (20) through (22), we obtain a

general energy-related solution set of which other solutions

are special cases obtained by different choices of any

permissible set of two of the remaining parameters. This
solution is stated in theorem form as follows:

Theorem I The Algebraic Riccati Equation

for second-order mechanical systems is uniquely solved

in closed form by the open-loop matrix pair

=r2,K+,,rll+,abr' 1
Q L H* +abF 2bD+bF-2aggJ

[ ]K= O aM

,a9_lf h0kr
03)

For K to be positive
^

where H = -O+ bK+ a(D+ G).

definite, the parameters of (33) are subject to the

following constraints:
A a i

K >0:::,b>0; (K,-Ku*K_K,,)>0:=_O>--M
b (34)

Note that the constraints (34) require a damping increase

but, in general, allow positive, negative or zero stiffness

change.

The solution of Theorem 1 contains all possible

sets of solutions to the optimal full-state-feedback control

problem in which collocated perfect sensor-actuator pairs

are present. This includes all combinations of linear

structures and linear viscous dampers. The precise
member (acfu_ii0r-sdns0r pah:) 10_aii0iiS are_set= l_y th_

connection matrix B. The solution is best interpreted

physically by regrouping terms in the closed-loop form of

the original objective function as follows:

1

V = 2 j'*"(z * Qz + u * Ru)dt =

4) * V2aK + aaF

L ll * +abF

+(q

H + abl" ^ t_'q'[1

2bD + b'r'- 2a MJ[qJ _lt

• .ra2r abr" [q) 1

q) [abF b'F /qf J

dt

^ ^ ^

where 1_I= -O+ bK+ a(D+ q*)

Using the closed-loop formulation of (35),

Theorem 1 can be alternatively stated as follows:

(36)

Theorem 2 The Algebraic Riccati Equation

for second-order mechanical systems is uniquely solved

in closed form by the closed-loop matrix pair

..]-O+ b_:+ a0O+ q)
s

2bD- 2aM

b_O, K>0

I ^

= 2aK
A A

-O+ bK+ a(_+ G*)

[ ;]K= O aM ,

,_ b (37)

where , O, (0 = K )is an arbitrary matrix and a and b

are arbitrary scalar constants. For K to be positive

definite, the parameters of (35) are subject to the

constraints (34).

For stability, (9) requires Q > 0 which translates, using

the approach of (34), to

a_>0 and _) > a0_f
b

a veryconservativerequirementunlessa2 issmallrelative

tob. The above resultsarecollectivelysummarized inthe

followingtheorem:

Theorem 3 All controllaws which can be

implemented by collocatedactuator-sensorpairs,

includingstructuralstiffnessor linearviscousdampers,

to minimize
: - LL ;:

1

V = _'!.(z * Qz + u * Ru)dt, Q > 0,

subjecttotheequationsofmotion

R>0

t
are given by

u = -aRaB * q + bR-_B * q

resulting in
e

BU = -aBR_B * q - b%R-_B * q = AKq + ADq

where a and b are scalar constants.

?'he closed-loop objective function is

6



v = 2Jo"(q q)*
08)

fi _ ^ A Awhere --0+ bK+a(_+ G) and the value of V is

1
V = -z * (0)Kz(0)

2

21 • [_,f a°_l_'q*(O)_t^"(O)J
=-(q (0) q*(O))

a bM.Jkq* 09)

^

where 0 is a symmetric, positive-definite matrix. The

parameters a, b, and 0 are arbitrary but subject to the
following constraints for a valid (i.e., K>O) and stable

:i.e., [L >-O)solution:

2

b>0and O> ; a>0and D>a_f ;
b b

The integrand of (38) is a "generalized-energy"
function for linear, viscously-damped, multi-variable
mechanical systems which are altered by changing member

damping and stiffness. For O b ^ ^= K, a=l/2, and D= 0,
(3) reduces to the standard Lagrangian for conservative
systems. However, since b>0 is required for a solution to
exist, the closed-loop damping cannot be zero and a direct
extrapolation to the Lagrangian is not valid. The
expression for the control forces or system changes,

(_a= -aBR 'B* q - bBR-'B* q = AKq + ADq) indicates

clearlythat,inthediagonalgainformatofSectionI,the
diagonalvaluesof R aretheinverseofthespringand
damping constantvalues.Hence,a heavy penaltyon
control,R,resultsinasmallcontroleffect

physical Interpretation of General Solution

Theorem 2 provides significant insight into the
physical interpretation of possible optimal control
solutions for structural systems. It gives key to the
closed-loop (redesigned system) dynamics relationships
between what is being minimizzd and the final value of the
objective function in terms of mass, stiffness and damping
of the final system. Of course, the final control law (i.e.,
the structure design change) still depends on the choice of
R, B, a, and b. By imposing additional conswaints to the

equation set, other recognizable forms of Qand K can be

obtained. Examples are as follows:

= ^ b ^Example 1: Imposed constraint--O aD+ K.
Solution:

aq
(_= [2a_Laq 2b_- 2a_lTfI

(40)

This solution is equivalent to the that of Kojihani and
lkeda, presented in open-loop form in (24) and (25).

^

Example 2: Imposed constraints-- O = bK, and a =0.
Solution:

(4D

In this case, the integral of a constant times lhg_.R_gtY.l.c.J_
Dissipation Function is minimized and the objective
function cost is b times the total initial energy.

^

Example 3: Imposed constraints--O = bI_

i A ]
^ K q)
Q=2a ^

z

K

K=b -Ma^ bJ
_b (42)

For positive definite K, (38), the requirements are

b > 0 a_l I<M"K
(43)

^

Orthogonal modal vectors, _, may be chosen such that
the mass and stiffness matrices are normalized to yield

^ ,i,£,i,_* M_ = I and = (_)2 where _ is a diagonal

^

matrix with diagonal elements _o,,the undamped natural

frequencies of the closed-loop system. Substituting these
orthogonality properties into (39) yields the condition for
positive definite K to be

'b > 0 and K> M_ <coo
(44)

^

where to, is the smallest eigenvalue of the undamped

system.

Consider the single-degree-of-freedom subset of
this solution. In order for K to be positive definite,

7



<o,.-- IIg,I<
(45)

where the lower case symbols represent the single degree-
of-freedom version of their upper case counterparts. The
value of K12 at which this occurs is independent of both a
and b. K12 is constrained to be less than twice critical
damping and (lalfo) is constrained to be smaller than the
natural frequency. For a=0, the cost is the initial energy in
the open-loop system. (The closed-loop system is damped
even though damping does not appear in the K mamx.)

Example 4: Imposed constraints-- O = bI( and

^ ^

D = (2a / b)M. Solution:

;c 2(D+ ;c -
(_ 2a 1 ^ K== b ^

-j(m_)

In this case, if there are no gyroscopic terms,
^

I( = (b / 2a)Q and from equation (8),

1 bz, ^ 1 . ^V = -z * (0)Kz(0) = -- (0)Q z(0) = -re z * Qzdt
2 4a 2

(47)
This simple scalar relationship, which requires a>0, is
interesting in that it is equivalent to the integrand
remaining constant for a period of time equal to b/2a and
then dropping to zero, or dropping linearly to zero over
time period b/a.

^ b ^Example 5: Imposed constraints-- O aD+ K,

and D = M. Solution:

(_=2a K=b

b (48)

In this case, the integral of the total enerev is minimized.

Example 6: Imposed constraints-- O arbitrary and a--0

I/° ( +tl ?0]0
-O+ 2bD J bM (49)

^

In this case, note that if b = 1 and O=I, the final cost,

which is minimal for any particular B and R, is the sum
of the kinetic energy and the squared displacements. This
has the potential of being a highly useful physical case
where practical solutions exist.

Example 7: The _lution of Belvin and rPark, (29)
through (32), is not a member of this solution set in
general because it assumes values for all four terms of Qij
and for F. The resulting K22 is not necessarily
constrained to the same predefined connection form
although KI2 is. Equivalence occurs in the following
special case:

K = (2a+b)M. r/=a, O= 2bK
b2 (50)

Note that the original statement of the Belvin-Park
solution required B -1 to exist and F = K.

V. Optimal Values of the R Weiehtin_
Matrix/Control Gain

In the general LQR control design problem,
choosing the control weighting matrix R (or F if the
connection matrix B is not predefined) is a difficult task.
In the closed-form solution of Theorem 3, a permissible

^

set of Q_ (Q > 0) and/or O matrices can be selected based

on the physics of the problem, and the equations solved for
F, the optimal feedback gain to minimize the resulting
function. Solutions, where they exist, indicate what the
ideal control would be but are not always physically
practical. The following subsections illustrate this
process.
Optimal R for S_ecified Oven-Loon O

Rewriting the Q equations of (37) gives insight
into selection options for final solutions in terms of
frequently used weighting matrix forms, where they exist.

Q,, = 2aK + a2F (51)
^

Q,2 = - O+ bK + a(D + q) + abF (52)
^

Q,, = 2bD + b_F - 2a M (53)

Having already chosen two of the four parameter matrices
allowable for a unique solution, only two remain. From
(51) to (53) it is clear that one choice is to choose either

Qll or Q22, which fixes F, and either QI2 or O(i.e.,

Kll), either of which fixes the other. (Note that Q12
must contain a term which equals the gyroscopic term

a G, if it exists, since all other matrices are symmetric and
F is defined to be symmetric.) If the available

connectivity, B, is known, then the optimal member

gain is R"1 and is solvable from F. A second possibility

it to choose both QI2 and O which fixes F and, hence,

Q11 and Q22. The difficulty in doing this is that the
closed-loop objective function is of the generalized energy
form and, consequently, many frequently used non-energy
Q forms produce impractical solutions.

8



Choosing both Q11 and Q22 assumes that an

additional constraint equation, obtained by eliminating F
between (51) and (53), is satisfied. This constraint,

a 2

Q, = .--7(Qn - 2bD+ 2aM)+ 2aK
b- (94)

implies a fixed relationship between the mass, stiffness,
and damping matrices which is not likely to exist initially
and may not be readily imposed on the system.

Some examples, based on various choices of
parametermatrices arepresented below:

Example 8:Q11 = I, QI2 = 0

r"= - 2aK)
a

b2
Qza = 2bD - 2aM+ --7(I - 2aK)

a

(9=-bK +aD+bI
a

This solution is easily shown to be physically impractical
by examining the closed-loop stiffness matrix.

I
K+AK=-I-K

a
For most problems, this matrix will require members with
negative stiffness. For example, for the three-mass
system, Configuration 1, in Fig. 3, referring to the
notation of Fig. 2 and assuming :

Gk=[2, 2, 4, 1, 3, 1] and a=0.2,

the closed-loop spring gains become

Gk=[3, 3, 1,-1,-3,-1]

with negative spring constants on the ungrounded springs.
For the choice of QI t =I, R cannot be positive definite
unless the closed=loop stiffness matrix is diagonal, that is,
nomasses are interconnected.

Example 9: Q,a =aG, _ =bK

1
F=---D

b

a'
Q,,= ---D + 2aK

b

Q,, = bD- 2aM

In this case, F, (i.e., R) is negative and the stiffness and
damping changes are

a
AK = ---D, and AD = -_D

b

The closed-loop damping is zero and the system is not
asymptotically stable.

Example 10: z*Qz = y*y = z*C*Cz

(C*=[ C 1 C2 ]*), arbitrary _.

This choice fixes all three Q matrices and, hence, imposes
a requirement that constraint (94) be satisfied, that is

2 2

aC, * C, + _-C a * Ca = (-2bD + 2aM) + 2aK

Furthermore, (52) becomes

A

F = --[C, * C, + O- bK - a(D + G)]
ab

which requires C I*C 2 to contain a skew symmetric term

to offset the gyroscopic term. Even if the gyroscopic term
is zero, the constraint between C 1 and C2 will be difficult
if not impossible to meet in order to get a valid solution.

Optimal R for Specified Closed-Loop 0

Prespecifying closed-loop parameters in order to
solve for the optimal R is an alternative to the open-loop
case above. From (35), the appropriate relationships are

^ ^

Q,,= 2aK = 2aK + 2a2F (55)

^ ^ ^ .,_

Q,2 = -O+ a(D+ G) + bK

= - O+ a(D + G) + bK + 2abr

^ ^ ^ ^ 2

Q. = 2bD- 2aM = 2bO- 2aM+ 2b F

Example 11: (_, = I, Arbitrary second choice.

(563

(57)

In this case, we are minimizing the square of the
closed-loop displacements. The closed-loop system
requires

^ 1
K_-mI

2a

That is, the closed-loop stiffness is diagonal, no matter
what its open-loop form. Clearly, from the diagonal gain
conceptualization of Section I, the solution is decentralized
control with all masses independently grounded (and all
interconnections eliminated). However, this is rarely
practical in passive systems, if ever. In active systems,
considerable energy must be expended to cancel the internal
forces of the connecting springs and dampers, an inefficient
approach at best. Of course, removing the

9



interconnections and applying independent, decentralized,
active conlrois (i.e. "flying in formation*) will work but is
also likely to be impractical.

VI. Coneludin_ Remark_

The design of dissipative structure]control

systems using linear quadratic regulator (LQR) theory is
investigated. Results are summarized as follows:

1) The problem is formulated in physical
coordinates, in term of mass, stiffness, and damping
matrices. A diagonal-gain structural connectivity form is
used to clarify physical interpretation.

2) Solutions to the algebraic Riccati equation are
developed which constrain system changes to predefined,,
physically possible connections in mechanical systems.

3) A general closed-form solution is presented
which can be adapted to many LQR objective functions.
The closed-loop objective function is a particular
generalized energy form, regardless of what open-loop
weighting matrix (Q) form is chosen.

4) An optimal control gain weighting matrix (R)
is shown to be available for properly specified objective
functions. Improper choices of Q weighting matrices are
shown to result in impractical hidden constraints or
physically non-existent solutions for control gains.

7. Belvin, W. K.; and Park, K.C.: Structural Tailoring
and Feedback Control Synthesis: An Interdisciplinary
Approach. AIAA Journal of Guidance, Control, and

Dynamics, Vol. 13, No. 3, pp. 424-May-June, 1990.

8. Inman, D.J.: Critical Damping in Complex
Structures and Control Systems. Vibration Damping
Workshop 1984 Proceedings, AFWAL TR-84-3064, pp
AAA-I-I 1, November 1984.
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